Course requirements

- BLS competency testing
- Skills stations
- EKG rhythm identification
- PALS core case discussion and simulations
- PALS core case testing stations
- Written exam

Course outline

- Systemic approach to seriously ill or injured child
- Recognition of respiratory distress and failure
- Management of respiratory distress and failure
- Recognition of shock
- Management of shock
- Rhythm identification
- Pharmacology
- Vascular access
- Recognition and management of bradycardia
- Recognition and management of tachycardia
- Recognition and management of cardiac arrest
- Post resuscitation management

Skills stations

- BLS competency testing (child / infant / AED)
- Airway competency (ET / LMA / WFC)
- Vascular access (IO)
- Rhythm recognition review
• Kids are not small adults

• Don’t panic
 – Disorganization is counter productive
 – It is better to do something right than to undo the mistake and correct it

• Preventing an arrest is primary since the outcome if an arrest occurs is usually poor.

• A systematic approach is essential

• Remember Kids like
 – Air ———— Respiratory
 – Water ——— Shock
 – Sugar ——— Glycemic unbalance
• Problem areas
 – Respiratory
 • Asthma, pneumonia, respiratory failure
 – Circulatory
 • Dehydration, shock
 – Glucose
 • Hyperglycemia, hypoglycemia
 – Trauma
 – Cardiac arrest

• Phases of the systemic approach
 – Initial impression
 • Conscious, breathing, color, activity
 – Evaluate- life threatening / non life threatening
 • Primary ABCDE
 • Secondary – med history, physical exam
 • Diagnostic tests
 – Identify
 • Respiratory, circulatory, cardiac arrest
 – Intervene
PALS Handbook

- **Assessment**
 - Initial pediatric assessment
 - General appearance
 - Work of breathing
 - Skin perfusion
 - Primary assessment
 - Airway - patent noiseless
 - Breathing – present, rate, sounds
 - Circulation
 - Disability
 - Exposure
 - Secondary assessment
 - Physical exam – head to toe
 - Sample history
 - Symptoms, allergies, meds, past history, last meal, events causing
 - Bedside
 - BGL, Vital signs, EKG monitor
 - Tertiary survey
 - Focused history and examination
 - Diagnostic tests
 - ABG and VBG
 - Hemoglobin concentrations
 - Central venous oxygen saturation
 - Arterial lactate
 - CVP monitoring
 - Chest X-ray
 - Peak expiratory flow

Categorize
 - respiratory, circulatory, cardiac
• Airway assessment
 – Clear – unobstructed
 – Maintainable – by position or simple airway maneuvers
 – Not maintainable
 • FBAO – Heimlich, blows, CPR
 • Requires an advanced airway
• Breathing
 – Respiratory rate
 – Respiratory effort
 – Chest expansion and airway movement
 – Lung and airway sounds
 – SPO2
• Normal respiratory rates by age
 – Age | Breaths / min
 – Infant < 1 year | 30-60
 – Toddler (1-3 years) | 24-30
 – Preschooler (4-5 years) | 22-34
 – School age (6-12 years) | 18-30
 – Adolescent | 12-16
• Assessment of respiratory rates
• Method
 – Count respirations for 30 seconds and multiply by 2 for minute rate
• Note
 – Anxiety can raise the respiratory rate
 – Assess rates frequently if child has respiratory difficulty
• Abnormal respiratory rates
 – Apnea
 • Central apnea – suppression of the brain or spinal cord
 – Tachypnea – causes
 • Fever, pain, acidosis, anemia, sepsis
 • CHF, congenital heart defects
 – Bradypnea – causes
 • Respiratory failure
 • CNS injury or infection
 • Hypothermia
 • Medications
 • Note: may signal arrest in an acutely ill child

• Respiratory effort
 – Dyspneic children and infants
 • Work hard to maintain adequate oxygenation
 • Fatigue easily and go into respiratory failure
 • It is important to recognize and treat respiratory difficulty
 – Early signs or respiratory distress
 • Nasal flaring
 – Dilation of the nostrils to increase air intake
 • Retractions
 – Inward movement of the chest wall, neck, and sternum
 • Head bobbing
 – Caused by neck muscles used to assist ventilation
 • Seesaw respirations
 – Chest retracts and abdomen expands during inspiration
 – Most common in children with neuromuscular disease
• Respiratory effort
• Chest expansion
 – Normal
 • Symmetrical chest rise (full expansion)
 • In infants the abdomen may move more than the chest
 – Abnormal
 • Decreased or asymmetrical chest rise
 – Inadequate effort
 – Airway obstruction
 – Pneumothorax / hemothorax
 – FBAO
 – Mucous plug
 – Pleural effusion

• Lung and airway sounds
 – Stridor
 • Coarse high pitched sound heard during inspiration
 • Indicates an upper airway obstruction
 – Grunting
 • Short low pitched sound heard during expiration
 • Sign of lung disease (alveolar collapse)
 – Early
 – Gurgling
 • Upper airway obstruction
 • Due to secretions or vomit in the upper airway
 – Wheezing
 • High pitched whistling sound heard on expansion and inspiration
 – Crackles – accumulation of alveolar fluid (hairs rubbing together)
Respiratory effort

- **Chest neck and sternum retractions**
 - **Mild to moderate breathing difficulty**
 - **Location**
 - **Subcostal**
 - **Substernal**
 - **Intercostal**
 - **Description**
 - Abdomen below rib cage
 - Abdomen below sternum
 - Between the ribs
 - **Severe breathing difficulty**
 - **Location**
 - **Supraclavicular**
 - **Suprasternal**
 - **Description**
 - Neck above the clavicle
 - Chest above the breastbone

RESPIRATORY DISTRESS / FAILURE

![Image of respiratory distress]
• How to assess circulation and perfusion
 – Heart rate and rhythm
 – Pulses
 – Capillary refill
 – Skin color and temperature
 – Blood pressure

• Normal heart rate table
 – Age
 – Infant-3mo. 85-205 80-160
 – 3 mo.- 2yrs 100-190 75-160
 – 2 yrs. -10 yrs. 60- 140 60-90
 – >10 yrs. 60-100 50-90

• Abnormal heart rates
 – Bradycardia
 • Slight bradycardia in athletic children
 • Usually results from hypoxia (poor perfusion) in ill children
 • Can result from heart blocks and drug overdoses
 – Tachycardia
 • Mostly related to a cause (i.e. fever, anxiety)
 • May result from cardiac problems (SVT)
 – Cardiac arrest
 • Poor prognosis

• Pulses
 – Central
 • Femoral, brachial (infants), carotid (older children), axillary
 – Peripheral
 • Radial, dorsal pedis, posterior tibial
• **Pulse assessment**
 – Normal pulses are strong and equal
 – Weak or unequal pulses indicate circulatory problems
 – Pulsus paradoxus
 • Fluctuation in volume with the respiratory cycle
 • Usually associated with asthma and tamponade
 – Intubated patients
 • Reduction in pulse volume indicates hypovolemia

• **Capillary refill**
 – The time it takes blood to return to tissue blanched by pressure
 – Best performed at room temperature
 – Select an extremity slightly above the level of the heart
 – Measure the time to return to normal color (< 2 seconds)

• **Skin color and temperature**
 – Normal – uniform color over the entire body
 – Inadequate tissue perfusion
 • Pallor
 – Decreased blood supply to the skin
 – Decreased number of red cells
 • Mottling
 – Hypoxia, hypovolemia, chock
 • Cyanosis
 – Low oxygen tension
 – Alveolar hypoventilation (TBI / drug O.D.)
 – Diffusion effect (pneumonia, PE)
 – Ventilation/perfusion unbalance (asthma)
 – Intracardiac shunt
• Blood pressure
• Cuff selection
 – Inaccurate readings result from improper cuff selection
 – The proper cuff should cover 50-75% of the distance from axilla to A.C. fossa

• Normal Pediatric Blood Pressures
 – Age Systolic Diastolic
 – Neonate 60-80 30-53
 – Infant (1-6 MO.) 73-102 40-68
 – Infant (6-12 MO.) 80-104 44-68
 – Infant (1 year) 68-103 20-58
 – Child (2 years) 70-106 25-65
 – Child (7 years) 79-115 38-79
 – Adolescent 93-131 45-85

• Hypotension by age
 – Age Systolic
 – 0-28 DAYS <60
 – Infant (1-12 MO.) <70
 – Children (1-10YR.) <70 + age /2
 – Children (>10 years) <90
• Primary concerns
 – Inadequate circulatory function
 • Decreased level of consciousness
 • Loss of muscle tone
 • Centralized seizures
 • Pupil dilation
 – Evaluation of the neurological function
• Assessment of disability
 – AVPU
 • A- Alert
 • V- Voice (response)
 • P- Pain (response to)
 • U- Unresponsive
 – Glasgow coma scale
 • Eye opening
 – Spontaneous, speech, pain, none
 • Verbal response
 – Oriented, confused, Inappropriate, Incomprehensible, none
 • Motor response
 – Obeys, Localizes, Withdraws, Flexion, Extension, None
 • 1 point for each (maximum score 15 minimum score 3)
 – Pupillary response
 • Size
 • Equality
 • Constriction in response to light
• Full body exposure
 – Clothing may cover indications of injuries and physical abnormalities
 – Clothing also makes it difficult to visualize chest movement
 – Skin abnormalities such as a rash may be missed by clothing
 – To correctly assess your patient remove as much clothing as necessary

• Full body assessment (head to toe)
 – Head
 • Skull – fractures, bleeding
 • Eyes – pupillary response, vision, movement
 • Ears – hearing, bleeding
 • Nose and mouth – bleeding, fractures, speech
 – Neck and spine
 • Deformity / fractures / movement
 • Supple or rigid
 • Spine – deformity, movement, pain
 – Chest
 • Equal expansion
 • Bruising deformity or evidence of trauma
 • Lung sounds
 • Heart sounds
 – Abdomen
 • Soft, rigid, tender, guarding, pain (check all 4 quadrants)
 • Bruising, lacerations, swelling, pain, bleeding
 • Vomiting, bowel movements
 – Pelvis
 • Crepitus, pain, genitalia, bleeding, swelling, hip fracture / dislocation
 – Upper extremities and Lower extremities
 • Range of motion, fractures / dislocation, pain, swelling, bruising, bleeding, distal pulses, feeling
 – Skin - Rashes, bites, abnormalities
• General
 – Definitions
 • Respiratory distress
 – The body’s increased respiratory efforts to meet the body’s oxygen demands
 • Respiratory failure
 – Inadequate oxygen and ventilation
 – Hypoxemia
 • Low oxygen tension
 – Not enough oxygen to meet tissue oxygen requirements
 – Does not always create tissue hypoxia
 – Mechanisms of hypoxemia
 » Low atmospheric oxygen
 • High altitude
 » Alveolar hypoventilation
 • TBI, drug O.D., CNS infection, apnea, neurological problems
 » Diffusion effect
 • Pulmonary edema, interstitial pneumonia
 » V/Q unbalance
 • Asthma, ARDS, bronchiolitis, FBAO, embolus, atelectasis
 » Right to left shunt
 • Congenital heart disease, extra-cardiac shunt
• General continued
 – Tissue hypoxia
 • Results from inadequate tissue perfusion without compensation
 • Signs of tissue hypoxia
 – Tachycardia
 – Tachypnea
 – Nasal flaring
 – Agitation, anxiety, irritability
 – Cyanosis (late)
 – Decreased level of consciousness (late)
 – Bradycardia (late)

 – Hypercarbia
 • CO2 is the by product of respiration
 • Retained CO2 creates respiratory acidosis
 • Causes
 – Decreased respiratory rate
 – CNS dysfunction
 – Drugs
• Respiratory distress
 – The body’s increased efforts to meet the oxygen demands

• Physiological factors
 – Increased airway resistance (upper and lower)
 – Decreased lung compliance
 – Use of accessory muscles
 – CNS disorders that control breathing

• Signs of respiratory distress
 – Tachypnea
 – Increased respiratory effort
 – Nasal flaring
 – Inadequate respiratory effort (bradypnea)
 – Abnormal airway sounds (stridor, wheezing, rales)
 – Tachycardia
 – Pale cool skin
 – Changes in level of consciousness
• Respiratory failure
 – Inadequate oxygen and ventilation
• Signs of respiratory failure
 – Marked tachypnea (early)
 – Bradypnea (late)
 – Increased, decreased, or no respiratory effort
 – Poor to absent air movement
 – Tachycardia (early)
 – Cyanosis (late)
 – Stupor / coma (late)
• Examples of respiratory failure
RESPIRATORY PROBLEMS

• Types or respiratory problems
 – Upper airway obstruction
 – Lower airway obstruction
 – Lung tissue disease
 – Disordered control of breathing

• Upper airway obstruction
 – Causes
 • Croup / epiglottitis
 • Anaphylaxis
 • Abscesses / tumors
 • Foreign body airway obstruction
 • Secretions
 • Subglottic stenosis
 – Signs
 • Tachypnea
 • Increased respiratory effort
 • Change in voice
 • Stridor (high pitched sound)
• Lower airway obstruction
 – Causes
 • Asthma
 • Bronchiolitis
 – Signs
 • Tachypnea
 • Wheezing
 • Increased respiratory effort
 • Prolonged expiratory phase
 • Cough

• Lung tissue disease
 – Causes
 • Pneumonia
 • Pulmonary edema
 • Pulmonary contusion (trauma)
 – Signs
 • Tachycardia and Tachypnea
 • Increased respiratory effort
 • Grunting
 • Crackles / rales
 • Diminished breath sounds
 • hypoxemia

• Disordered control of breathing
 – Causes
 • Neurological disorders
 • Brain injury, tumors, hydrocephalus
 • Neuromuscular disease
 – Signs
 • Variable irregular respiratory rate and effort
 • Shallow breathing
 • Central apnea
MANAGING RESPIRATORY DISTRESS AND FAILURE

• General
 • Respiratory failure is the major cause of pediatric cardiac arrest
 – Procedure
 • Detect and treat early
 • Identify the type and severity
 • Stabilize oxygenation and ventilation
 • Find the cause after stabilization
 – Target management based on 4 types
 • Upper airway obstruction
 • Lower airway obstruction
 • Lung tissue disease
 • Disordered control of breathing
 – For patients with potential for decline
 • Apply oxygen preferably humidified
 • Start an IV
 • Draw labs
 • Try to identify
 – The problem
 – Type and severity

Life threatening problems
Primary assessment (ABCDE)
Treat life they occur
If there are no life threatening problems proceed to the secondary survey
• Upper airway obstruction

 – Most common causes
 • Croup
 • Anaphylaxis
 • Foreign body airway obstruction

 – Croup
 • Most common 1 month to 5 years
 • Signs
 • Dyspnea, swelling of the vocal cords, barking cough
 • Causes
 • Viral, bacterial, allergic, inhaled irritants

 – Treatments
 • Maintain the airway, administer humidified oxygen if SPO2 < 94%
 • nebulized racemic epinephrine or albuterol
 • Administer dexamethasone or a steroid
 • Consider heliox treatment
 • Severs dyspnea consider advanced or a surgical airway
• Upper airway obstruction continued

 – Anaphylaxis
 • High flow oxygen / monitor / IV
 • Nebulized racemic epinephrine or albuterol every 15 minutes
 • Administer Benadryl and an H2 blocker
 • Prepare for intubation
 • Treat hypotension
 – Trendelenburg position
 – IV fluid boluses 20 ml /kg as needed
 – Epinephrine infusion if fluids are unsuccessful
 • Consider a surgical airway if intubation is not possible

 – Foreign body airway obstruction
 • Object in the trachea / non life threatening
 – High flow oxygen / monitor / IV
 – Prepare for bronchoscopy
 • Life threatening obstruction
 – Heimlich / CPR (back blows and thrusts / CPR infant)
 – Laryngoscope / Magill forceps
 – Prepare for a surgical airway

• Managing respiratory distress and failure
• **Lung tissue disease**

• **Causes**
 – Infectious pneumonia
 – Chemical and aspiration pneumonitis
 – Cardiogenic and non cardiogenic pulmonary edema

• **Infectious pneumonia**
 – High flow humidified O2 /I.V. / EKG / APO2
 – Diagnostic tests (ABG, X-ray, labs, cultures)
 – Antibiotic therapy
 – Treat wheezing with albuterol
 – Initiate I.V. fluids
 – Normalize temperature
 – CPAP / BIPAP / intubation for severe respiratory distress

• **Chemical pneumonitis**
 – Aspiration of a toxic gas or powder
 – Initiate humidified high flow oxygen initially
 – Treat wheezing with a nebulized bronchodilator
 – CPAP / BIPAP / Intubation with a ventilator for severe cases (failure)

• **Aspiration pneumonitis**
 – Aspiration of stomach contents
 – Initiate high floe humidified oxygen initially
 – Consider CPAP or BIPAP
 – For severe distress intubation with a ventilator
• Lung tissue disease continued
• Cardiogenic pulmonary edema
 – Causes
 • Ventricular myocardial dysfunction
 • Excess pulmonary hydrostatic pressure
 • Plasma red cell diffusion into the alveolar sacks
 – Treatment
 • High flow oxygen, I.V., EKG
 • Ventilation support
 – CPAP / BIPAP, Ambu bag, intubation (PEEP 6-10)
 • Consider diuretics
 • Reduce metabolic demand (temperature and work of breathing)

• Non cardiogenic pulmonary edema (ARDS)
 – Definition
 • Injury to interface between alveoli and pulmonary vessels
 • Triggers the release of inflammatory mediators
 – Causes
 • Pneumonia, sepsis, pancreatitis, trauma
 – Characteristics
 • acute onset
 • PaO2 /FiO2 < 200
 • Bilateral infiltrates (chest x-ray)
 • No evidence of cardiogenic causes
LUNG TISSUE DISEASE CONTINUED

ARDS treatment
- Cardiac monitor, vital signs, SPO2
- Labs (ABG, blood gas, CBC)
- Provide ventilation support
 - Ambu bag
 - CPAP/BIPAP
 - Intubation
 - Ventilator
- Indications for ventilation support
 - Worsening clinical and radiographic lung disease
 - Hypoxia refractory to high FiO2
- Combat hypoxemia
 - Peep until oxygen saturation is adequate
 - Low tidal volumes (5-7 ml/kg)
 - Peak inspiratory pressures < 30-50 cm H2O
Disordered control of breathing

Causes
- Increased ICP
- TBI
- Subdural / epidural hematoma
- Brain tumor, hydrocephalies
- Neuromuscular disease
- CNS depression
 - Drugs, Infection, Seizures, Metabolic disorders

Interventions for ICP
- Manage ABC’S
- Assess breathing problems
 - Assist ventilations (Ambu, ET tube hyper-oxygenate)
- Poor perfusion or end organ function
 - Administer 20 ml/kg boluses of a crystalloid solution
- Administer osmotic agents
 - Mannitol, dexamethasone
- Treat agitation and pain aggressively
- Avoid hyperthermia

Interventions for poisoning and drug overdose
- Manage ABC’S
- Contact poison control (1-800-222-1222)
- Prepare suctioning in case of vomiting
- Administer antidote
- Perform diagnostic tests

Interventions with neuromuscular disease
- Ventilation support
- Manage secretions
• Definition
 – Delivery of oxygen and nutrients do not meet the system’s needs.
 – This creates inadequate peripheral and end organ perfusion.
 – The areas of primary concern are the brain, kidneys, heart and liver

• Pathophysiology
 – Cells need constant oxygen delivery
 – The primary system is the circulatory system
 – The secondary system is anaerobic metabolism
 • Oxygen is created by acid conversion
 • This method has a limited ability to sustain oxygen demands
 • It also creates an undesirable acidic condition in the body

• Oxygen delivery and perfusion requirements
 – Sufficient oxygen in the blood
 – Adequate cardiac output
 – Adequate distribution
• Cardiac output
 – Cardiac output represents the pumping adequacy of the heart.
 – Cardiac output (CO) = Stroke volume x Heart rate
 – The cardiac output is determined by;
 • Preload – the volume of blood in the ventricles before contraction
 • Contractility – the strength of contraction
 • Afterload – the systemic resistance

• Compensatory mechanisms
 – The body compensates for shock by the following mechanisms
 • Tachycardia
 • Vasoconstriction
 • Increased contractility
 • Increase in smooth venous tone

• Organ response to compensated shock
 – Heart – tachycardia
 – Skin – cool, pale, mottled, diaphoretic
 – Peripheral circulation – delayed capillary refill
 – Pulses – weak peripheral, narrow pulse pressure
 – Kidneys – reduced urine output
 – Intestines – vomiting, ileus
• Shock states
 – Compensated – good perfusion
 • Early signs of compensated shock
 • Normal skin color and temperature
 – Compensated poor perfusion
 • Later signs of compensated shock
 • Pale, mottled skin, normal blood pressure lower urine output
 – Decompensated – blood pressure drops
 • All signs of late compensated shock
 • Blood pressure drops

• Response to shock in adults and children
 – Adults
 • Compensate for a shorter time
 • Decompensate more quickly
 • Can sustain de-compensation better
 – Children
 • Compensate for a longer period of time
 • Once they decompensate they crash quickly

• Hypotensive shock
 • Hypotensive shock is decompensated shock
 • Hypotension in children
Hypovolemic shock (Fluid loss)

- **Causes**
 - Diarrhea
 - Vomiting
 - Hemorrhage
 - Osmotic diuresis (DKA)
 - Inadequate fluid intake
 - Third space loss (anaphylaxis)
 - Large burns

- **Signs**
 - Tachypnea
 - Tachycardia
 - Systolic hypotension / narrow pulse pressure
 - Weak or absent peripheral pulses
 - Delayed capillary refill
 - Cool, pale, mottled, diaphoretic skin
 - Changes in level of consciousness
 - Oliguria
 - Extremities cooler than the trunk
• Hypovolemic shock management

 – Non-hemorrhagic shock
 • Rapid 20 ml/kg boluses of crystalloid fluids
 • If no improvement after 3 boluses (60 ml/kg)
 – fluid boluses under estimated
 – Consider colloids
 – Possible occult bleed
 – Combined
 • Determine the cause and correct the lab values
 • Manage the airway and oxygenate (Ambu bag, intubation)

 – Hemorrhagic shock
 • High flow oxygen
 • Begin 20ml/kg crystalloid boluses
 • Consider blood transfusion of whole blood or red blood cells
 • Reasons for transfusion
 – Known signs of significant blood loss
 – Crystalloid refractory hypotension
 • Do not use vasopressors to raise the blood pressure
 • Correct acid base unbalances
DISTRIBUTIVE SHOCK

• Causes
 – Sepsis
 – Anaphylaxis
 – Neurogenic problems
 • CNS disorders
 • Drugs
 • Spinal cord injuries

• Physiology
 – High to normal cardiac output – low SVR
 – Variable blood flow and perfusion (variable SVR)
 – Increased capillary permeability
 – Pulmonary hypertension (increased PVR)
 – Release if inflammatory mediators
 – Vasodilation causes blood pooling and clotting
 – Increased lactic acid buildup / acidosis
 – May lead to hypovolemic shock and cardiac dysfunction
 – Warm shock – blood shunted to the periphery

• Signs
 – Tachypnea / tachycardia
 – Warm shock
 – Cold shock
 – Changes in level of consciousness
 – Oliguria
 – Fever or hypothermia
 – Petechial or purpuric rash (septic shock)
• Septic shock (sepsis)

• Signs
 – Fever
 – Presence of infection
 – Hypotension
 – Tachycardia
 – Tachypnea
 – Acidosis
 – Metabolic unbalance

• Pathophysiology
 – Infection / endotoxin stimulates the immune system
 • Releases inflammatory mediators
 • Cytokines create micro clots
 – Variable SVR creates mal distribution of flow
 • Creates blood pooling and localized hypoxia
 – Relative hypovolemia
 • Vasodilation / increased permeability
 – Adrenal insufficiency
 • Cytokines create micro clots causing renal insufficiency
 • May create myocardial dysfunction
• Septic shock management

• Goal
 – Restore hemodynamic stability
 – Identify and control the infection

• Management
 – High flow oxygen
 – Rapid aggressive fluid bolus administration
 – Rapid administration of antibiotics (after culture)
 – Hemodynamic support
 • Vasopressors, hydrocortisone
 – Identify and correct metabolic problems
 – Diagnostic tests
 • Lactic acid concentration, base deficiency, CV oxygen saturation
 – Monitor severity of shock and response to fluids

 – Refractory septic shock management
 – Establish arterial and CV access
 – Administer vasoactive therapy
 – Administer additional crystalloid boluses (consider colloids)
 – If the hemoglobin concentration is < 10 g/dl consider a transfusion
 – Consider assisted ventilation Ambu bag or ET with a ventilator

• Therapeutic end points
 – Good distal pulses and perfusion
 – SCVO2 > 70%
 – Correct metabolic acidosis
 – Correct lactic acid concentration
• **Anaphylaxis**

• **Pathophysiology**
 – Multisystem allergic response to an allergen
 – Vasodilation with increased capillary permeability
 – Pulmonary vasoconstriction
 • Increased right side afterload
 • Reduced pulmonary blood flow
 – Sever inflammatory response
 – Death may occur in minutes

• **Signs**
 – Anxiety or agitation
 – Nausea and vomiting
 – Urticaria (hives)
 – Angioedema
 – Respiratory distress
 – Hypotension
 – Tachycardia

• **Management**
 – Epinephrine 1/1000 IM injection (second dose 10-15 min. if severe)
 – 20 ml/kg fluid bolus as required to support circulation
 – Albuterol by nebulizer (mild – intermittent/ severe – continuous)
 – Antihistamines H1 diphenhydramine / H2 ranitidine or famotidine
 – Corticosteroids – Solu-Medrol (methyl prednisone)
• **Causes**
 – Injuries to the cervical and thoracic spine above T6

• **Pathophysiology**
 – Loss of sympathetic nerves that control innervation to the heart

• **Signs**
 – Hypotension
 – Normal heart rate or bradycardia
 – Increased respiratory rate
 – Diaphragmatic breathing
 – Inability to compensate for hypovolemia

• **Management**
 – Position the child flat or head down
 • Improves venous return
 – Administer 20 ml/kg crystalloid bolus
 – Vasopressors if refractory to fluids
 • Norepinephrine
 • epinephrine
 – Provide warming or cooling as required
• **Definition**
 Cardiogenic shock is poor perfusion resulting from cardiac dysfunction

• **Causes**
 – Congenital heart disease
 – Myocarditis
 – Cardiomyopathy
 – Arrhythmias
 – Sepsis
 – Poisoning or drug overdose
 – Myocardial injury (trauma)

• **Pathophysiology**
 – Increased heart rate and ventricular afterload
 • Increased ventricular workload and myocardial oxygen consumption
 – Compensatory increase in SVR
 • Diverts blood from periphery to brain and organs
 – Decrease in stroke volume
 • Decreased contractility and increased afterload
 – Increased venous tone
 • Increases CV and pulmonary capillary wedge pressure
 – Diminished renal blood flow (fluid retention)
 – Pulmonary edema
• Signs
 – Tachypnea
 – Tachycardia
 – Low blood pressure / narrow pulse pressure
 – Weak or absent pulses
 – Delayed capillary refill, cool extremities
 – Signs of congestive heart failure
 • Pulmonary edema, JVD distension
 – Changes in level of consciousness
 – Cold pale diaphoretic skin / cyanosis
 – oliguria

• Management
 – Goals
 • Improve cardiac function and output
 • Increase ejection fraction
 – Management
 • Cautious fluid administration / reduce afterload (5-10 ml/kg
 • Lab and diagnostic studies
 – ABG, X-ray, cardiac enzymes, hemoglobin
 • EKG
 • Medications
 – Diuretics – pulmonary edema
 – Vasodilators – lower afterload
 – Inotropes – increase contractility and cardiac output
 – Analgesics – for pain
• **Definition**
 - Cardiac output impaired by a physical obstruction to blood flow

• **Causes**
 - Cardiac tamponade
 - Tension pneumothorax
 - Ductal dependent congenital heart lesions
 - Massive pulmonary embolism

• **Signs**
 - Respiratory failure / pulmonary edema
 - Rapid deterioration in peripheral perfusion
 - Congestive heart failure (left, right side or both sides)
 - Absence of femoral pulses
 - Metabolic acidosis
 - Rapid changes in LOC
 - Tachycardia
 - Hypotension
 - Chest pain
 - Cool extremities and trunk / possible cyanosis
• **Cause**
 – Accumulation of blood in the pericardial sac
 – Reduces ventricular filling and stroke volume

• **Findings**
 – Respiratory distress and increased respiratory effort
 – Tachycardia
 – Cool extremities / delayed capillary refill
 – Muffled heart sounds
 – Narrow pulse pressure
 – Distended neck veins
 – Changes in LOC.

• **Treatment**
 – Initially
 • Rapid identification
 • Oxygen and fluid administration
 – Pericardial centesis
 • Perform if impending arrest
 • Requires a skilled person
 • Best done with fluoroscopy or electrocardiography
TENSION PNEUMOTHORAX

• **Cause**
 – Entry of air into the pleural space that accumulates under pressure
 • Trauma or spontaneous
 • May occur in ventilated patients

• **Findings**
 – Respiratory distress with increased respiratory effort
 – Distended neck veins
 – Tracheal deviation
 – Rapid deterioration in perfusion
 – Rapid evolution tachycardia to bradycardia
 – Hypotension
 – Changes in LOC

• **Treatment**
 – Immediate needle decompression
 – Insert an 18-20 gage. Needle
 • Over the top of the 3rd rib (second intercostal space)
 • At the mid clavicular line
 – A gush of air will be heard after decompression
 – More than 1 decompression may be necessary
 – A chest tube will ultimately be required
• **Causes**
 - Cyanotic congenital heart lesions
 • Patent ductus arteriosus
 - Left ventricular outflow obstructive lesions
 • Coarctation of the aorta
 • Aortic valve stenosis
 • Hypoplastic left heart syndrome

• **Findings**
 - Respiratory failure
 - Cardiomegaly (rapid deterioration in perfusion)
 - Higher pre ductal versus post ductal pressures
 - Absence of femoral pulses
 - Cyanosis
 - Hypotension with tachycardia

• **Treatment**
 - Continuous infusion of prostaglandin E to close ductus arteriosus
 - Ventilation support with oxygen administration
 - Electrocardiography
 - Inotropic agents to improve contractility
 - Fluids to improve cardiac output (caution)
 - Correct metabolic derangements
PULMONARY EMBOLIS

• **Cause**
 – Partial or total obstruction of the pulmonary artery and its branches by a blood clot

• **Findings**
 – Respiratory distress with increased respiratory effort
 – Tachycardia
 – Cyanosis
 – Hypotension
 – Changes in the level of consciousness
 – Increased ventilation has no effect on SPO2

• **Treatment**
 – Initial – ventilation support and fluid therapy
 – CT angiography / echocardiography (diagnostic)
 – Anticoagulant therapy (heparin)
 – Consider thrombolytic agents (TPA)
SHOCK MANAGEMENT

• Fundamentals
 – Optimize the oxygen content of the blood
 – Improve volume distribution and cardiac output
 – Reduce the oxygen demand
 – Correct metabolic derangements

• Successful treatment of shock
 – Therapeutic end points
 • Normal heart rate and blood pressure
 • Normal pulses
 • Capillary refill < 2 seconds
 • Warm extremities
 • Normal mental status
 • Urine output > 1 ml/kg/hr
 • Decreased serum lactate
 • Reduced base deficit
 • ScvO2 > 70%
SHOCK ALGORITHMS

• Trauma shock

20 ML/KG RAPID BOLUS LR OR NS

20 ML/KG RAPID BOLUS LR OR NS

20 ML/KG RAPID BOLUS LR OR NS

10 ML/KG PACKED RBC

SURGERY / WHOLE BLOOD

• Cardiac shock

20 ML/KG BOLUS NS OR LR

20 ML/KG BOLUS NS OR LR

DOPAMINE 2-20mcg/kg/min
EPINEPHRINE 0.1-1 mcg/kg/min
Dehydration shock

- **20ml/kg BOLUS NS OR LR**
- **DO NOT USE VASOPRESSORS**
- **REPEAT 20ml/kg BOLUSES AS LONG AS LUNGS ARE CLEAR**
- **CONSIDER A MAINTENANCE INFUSION**
• Septic shock

First 5 minutes
- Recognize altered mental status and perfusion.
- Maintain airway and establish access according to PALS guidelines.

5 to 15 minutes
- Push 20 cc/kg isotonic crystalloid or colloid boluses up to and over 60 cc/kg
- Correct hypoglycemia and hypocalcemia

Fluid responsive?
- Yes
 - Observe in PICU
 - Give hydrocortisone

- No
 - Fluid refractory shock
 - Establish central venous access, begin dopamine therapy and establish arterial monitoring
 - Fluid refractory-dopamine resistant shock
 - Titrate epinephrine for cold shock. Norepinephrine for warm shock

Catecholamine-resistant shock
- Is patient at risk for adrenal insufficiency?
 - Yes
 - Catecholamine-resistant shock
 - Add vasodilator or Type III phosphodiesterase inhibitor with volume loading
 - Persistent catecholamine-resistant shock
 - Place pulmonary artery catheter and direct fluid, vasoopressor, vasodilator, and hormonal therapies to attain normal MAP-CVP and CI >3.3 L/min/m²
 - Refractory shock
 - Consider ECMO

- No
 - Do not give hydrocortisone

Normal blood pressure, cold shock, SVC O₂ sat <70%
- Add vasodilator or Type III phosphodiesterase inhibitor with volume loading

Low blood pressure, cold shock, SVC O₂ sat <70%
- Titrated volume and epinephrine

Low blood pressure, warm shock
- Titrated volume and norepinephrine
- Low dose vasopressin or angiotensin?
• I.V. Access
 – Most common I.V. sites
 • Antecubital
 • Hand
 • Scalp on infants
 – Most common I.V. needles
 • 24 gage
 • 22 gage
 • 20 gage

• I.O. access
 – Any drug or fluid that can be given I.V. can be given I.O
 – Easier to attain than I.V. access especially in arrest situations
 – Contraindications
 • Fractures in an extremity
 • Previous attempt in the same place
 • Infection overlying the bone
• I.O. INSERTION SITES
• INFANT / PEDI INSERTION SITE

Location Site for
Pediatric Bone Injection Gun

A. Tibial Tuberosity
B. 0.5 in Medially, towards inner leg
C. 0.5 in Down, towards foot

Penetration Site
• OLDER PEDIATRIC / YOUNG ADULT

Location Site for
Adult Bone Injection Gun

Penetration Site

A
Tibial Tuberosity

B
1in Medially, towards inner leg

C
0.5in Up, towards knee
Insertion procedure using a Jamshidi needle

- Identify the tibial tuberosity
- Disinfect the area
- Leave the stylette in the needle
- Stabilize the leg
 - Do not put your hand behind the leg
 - Be sure the leg is fully on a hard flat surface
- Insert the needle perpendicular to the leg
- Use a twisting motion with firm pressure
- Insert until you feel a sudden decrease in resistance
 - A slight popping sound may be heard
- Remove the stylette aspirate and flush with a syringe
- Confirm placement
 - Pressurized fluids flow freely
 - There is no infiltration to surrounding tissues
- Stabilize the needle and tape over the flange
- Attach a 3 way stopcock
• **Drugs to control SVT**

 • **Adenosine**
 - **Classification** - antiarrhythmic
 - **Indications** – treatment of SVT
 - **Actions**
 - Stimulates adenosine receptors
 - Transiently blocks AV node conduction
 - Transiently interrupts reentry pathways
 - Depresses sinus node activity
 - **Dose**
 - First dose – 0.1 mg/kg rapid push (6 mg max dose)
 - Second dose – 0.2mg/kg rapid push (12 mg max dose)

• **Drugs to control bradycardia**

 • **Epinephrine**
 - **Classification** – catecholamine, vasopressor, inotrope
 - **Indication** – symptomatic bradycardia
 - **Action**
 - Stimulates beta 1 and 2 adrenergic receptors
 - Increases contractility, heart rate, blood pressure
 - Dilates bronchi and arterioles
 - **Dose**
 - IV / IO 0.1 mg/kg of 1/10000 every 3-5 minutes
• DRUGS TO CONTROL ASTHMA AND CROUP

• Albuterol
 – Classification: bronchiole dilator, beta adrenergic agent
 – Indications: asthma, anaphylaxis,
 – Action
 • Bronchiole and vasodilator,
 – Dose
 • Severe asthma: 0.5 mg/kg/hr continuous nebulizer treatment

• Atrovent (Ipratropium bromide)
 – Classification: anticholergic
 – Indication: asthma
 – Action
 • Blocks parasympathetic choline receptors
 • Inhibits serious mucus secretions
 – Dose
 • Nebulizer: 250-500 mcg every 20 minutes x 2

• Terbutaline
 – Classification: beta agonist, bronchiole dilator
 – Indications: asthma
 – Action
 • Dilates bronchioles and arterioles
 – Dose
 • IV/IO: 0.1 – 10 mcg/kg/min. Consider 10 mcg/kg over 5 minutes
• Asthma and croup continued

• Epinephrine
 – Classification – catecholamine, vasopressor
 – Indications – asthma and croup
 – Action
 • Stimulates beta 1 and 2 receptors
 • Increases contractility, heart rate, and systolic blood pressure
 – Dose
 • Asthma - 0.1 mg/kg of 1/1000 SQ (max dose 0.3 mg)
 • Croup – 0.25 mg racemic by nebulizer (2.25% in 3 ml)
 • Croup – 0.5 ml/kg of 1/1000 in 3 ml N.S, by nebulizer

• Dexamethasone
 – Classification - corticosteroid
 – Indication – croup and asthma
 – Action – anti-inflammatory agent
 – Dose
 • Croup – PO /IM /IV -0.6 mg/kg 1 dose (16 mg max)
 • Asthma – PO/IM/IV -0.6 mg/kg every 24 hours (16 mg max)

• Magnesium sulfate
 – Classification – electrolyte, bronchiole dilator
 – Indications - asthma
 – Action – smooth muscle relaxant, anti-arrhythmic
 – Dose asthma – 25 –50 mg/kg slow infusion (maximum 2 g)
DRUGS FOR ANAPHYLAXIS

- **Diphenhydramine**
 - Classification: antihistamine
 - Indication: anaphylaxis
 - Action:
 - Competes with histamines for H1 receptor sites
 - Decreases allergic response by blocking histamines
 - Dose:
 - 1-2 mg/kg every 4-6 hours (maximum dose 50 mg)

- **Epinephrine**
 - Classification: catecholamine, vasopressor
 - Indications: asthma and croup
 - Action:
 - Stimulates beta 1 and 2 receptors
 - Increases contractility, heart rate, and systolic blood pressure
 - Dose:
 - Asthma: 0.1 mg/kg of 1/1000 SQ (max dose 0.3 mg)

- **Dexamethasone**
 - Classification: corticosteroid
 - Indication: croup and asthma
 - Action: anti-inflammatory agent
 - Dose:
 - Asthma: PO/IM/IV -0.6 mg/kg every 24 hours (16 mg max)
• SHOCK FROM TRAUMA AND BURNS

• Albumen
 – Classification - plasma and volume expander
 – Indications - shock, trauma, burns
 – Action
 • Expands intravascular volume through colloid oncotic effect
 • Augments preload and thus cardiac output
 – Dose
 • IV / IO - 0.5-1 g/kg

• Norepinephrine
 – Classification - inotrope, vasopressor
 – Indication - hypotensive shock refractory to fluid boluses
 – Action
 • Activates alpha receptors causing vasoconstriction
 • Activates beta receptors increasing myocardial contractility and heart rate
 – Dose
 • IV / IO - 0.1—2 mcg / kg/min infusion

 I
• **SHOCK TRAUMA BURNS**

• **Vasopressin**
 – **Classification** – antidiuretic hormone
 – **Indication** – septic shock
 – **Action**
 • Mediated by vasopressin receptors
 – **Dose**
 • IV/IO -0.0002 – 0.002 units/kg/min continuous infusion
 – **Monitor**
 • Blood pressure and distal pulses
 • Water intoxication (headache, drowsiness)

• **Dopamine**
 – **Classification** – catecholamine, vasopressor, inotrope
 – **Indication**
 • Cardiogenic shock
 • Distributive shock
 – **Action**
 • 5 – 15 mcg/kg/min – increases, contractility, decreases SVR
 • 15 – 20mcg/kg/min – increases SVR and constriction of the arteries
 – **Dose**
 • IV/IO -2 – 20 mcg/kg/min
• **Alprostadil**
 – **Classification** – vasodilator, prostaglandin
 – **Indication**
 • Maintain patency with ductus arteriosus
 • Tetralogy of Fallot
 • Aortic stenosis or obstructive lesions
 – **Action**
 • Acts on FPE receptors to dilate arteries and arterioles
 • Stimulates uterine and smooth muscles
 – **Dose**
 • IV / IO – initial - 0.05 – 0.1 mg/kg/min infusion
 • IV / IO – maintenance – 0.01 - 0.05 mg/kg/min infusion

• **Inamrinone (Amrinone) and Milrinone**
 – **Classification** – phosphodiesterase inhibitor
 – **Indication**
 • Myocardial dysfunction and increased SVR
 • Cardiogenic shock with increased SVR
 • Post cardiac surgery
 – **Action**
 • Increases myocardial contractility
 • Reduces preload and afterload (relaxes smooth muscle)
 – **Dose** IV / IO
 • loading – 0.75 - 1 mg/kg slow bolus – amrinone
 • Infusion – 5 – 10 mcg/kg/min – amrinone
 • Loading – 50 mcg /kg (10-60 minutes) - milrinone
 • Infusion – 0.25 – 0.75mcg/kg/min - milrinone
• **Nitroglycerine**
 - Classification – vasodilator, antihypertensive
 - Indication – CHF, cardiogenic shock
 - Action - stimulates nitric oxide
 - Dose
 - Child / infant – 0.25 – 0.5 mcg/kg/min (titrate 1 mcg/kg/min)
 - Adolescents – 5-10 mcg/min (titrate to max of 200 mcg/min)

• **Nitroprusside** (monitor thiocyanate and cyanide)
 - Classification – vasodilator, antihypertensive
 - Indication – severe hypertension
 - Action
 - Relaxes arterial and venous beds by nitric oxide release
 - Reduces ventricular filling pressures and afterload
 - Dose
 - Initial – 0.3 – 1 mcg/kg/min (titrate as required to 8 mcg/kg/min)

• **Lasix (furosemide)**
 - Classification – loop diuretic
 - Indication - pulmonary edema / fluid overload
 - Action
 - Inhibits reabsorption of sodium in ascending loop of Henle
 - Increases excretion of potassium
 - Dose - 1 mg/kg (max dose 20 mg)
• **Dobutamine**
 – Classification – selective beta adrenergic agent
 – Indication - ventricular dysfunction
 – Action
 • Stimulates beta 1 receptors
 • Increases contractility, automaticity, and conduction velocity
 • Increases heart rate and vasodilation
 • Alpha blocking effects (risk of hypotension)
 – Dose - IV / IO – 2 – 20 mcg/kg/min

• **Lidocaine**
 – Classification - antiarrhythmic
 – Indication – wide complex tachycardia with a pulse
 – Action
 • Stabilizes cardiac membrane and decreases automaticity
 • Abolishes reentry
 – Dose
 • 1 mg/kg bolus followed by infusion 1-2 mg/min
Calcium chloride
- Classification - electrolyte
- Indication
 - Hypocalcemia
 - Hyperkalemia
 - Calcium channel overdose
 - Consider for hypomagnesemia
- Action
 - Maintains nervous, muscular and skeletal functions
 - Maintains cardiac contractility, coagulation and enzyme functions
 - Affects secretory function of endocrine and exocrine glands
- Dose
 - Arrest – 20 mg/kg bolus
 - Non arrest – 20 mg.kg infuse over 30-60 minutes

Sodium bicarbonate
- Classification - electrolyte
- Indication
 - Severe metabolic acidosis
 - Hyperkalemia
 - Sodium channel blocker overdose (tricyclic antidepressants)
- Action – increases plasma bicarbonate
- Dose - IV/IO
 - Metabolic acidosis / hyperkalemia – 1 mEq slow bolus (50 mEq max)
 - Sodium channel blocker overdose – 1 – 2 mEq bolus until pH >7.45

Magnesium sulfate
- Classification – electrolyte, bronchodilator
- Indication – asthma, torsades, and hypomagnesemia
- Action – smooth muscle relaxant, antiarrhythmic
- Dose
 - asthma – 25 – 50 mg/kg infusion (20 min) to a max of 2g
 - Torsades (pulseless) – 25-50 mg/kg bolus to a max of 2g
 - Torsades (pulse) – 25-50 mg/kg over 20 minutes
Epinephrine
- **Classification** – Catecholamine, vasopressor, inotrope
- **Indication** – cardiac arrest
- **Action**
 - Stimulates beta 1 and 2 receptors
 - Increases contractility, heart rate, and systolic blood pressure
 - Dilates bronchi and arterioles
- **Dose**
 - IV/IO – 0.1 mg/kg of 1/10000 every 3-5 minutes
 - ET tube – 0.1 mg/kg of 1/1000 every 3-5 minutes

Vasopressin
- **Classification** – antidiuretic hormone
- **Indication** – cardiac arrest
- **Action**
 - Mediated by vasopressin receptors
 - Vasoconstrictor increases catecholamine response
 - Increases water permeability in the distal tubes
- **Dose** – IV/IO 0.4-1 unit/kg (maximum dose = 40 units)
• Amiodarone
 – Classification - antiarrhythmic
 – Indication – cardiac arrest
 – Action
 • Works in both the atria and ventricles
 • Prolongs action potential duration
 • Slows sinus rate
 • Inhibits alpha and beta adrenergic receptors
 – Dose
 • IV/IO – 5 mg/kg rapid bolus (maximum dose = 300 mg)
 • Follow up with a drip infusion

• Lidocaine
 – Classification – antiarrhythmic, anesthetic
 – Indication – cardiac arrest
 – Action
 • Works primarily in the ventricles
 • Increases electrical stimulation stabilizing cardiac membranes
 • Reduces ICP by inhibiting sodium channels
 – Dose
 • IV/IO -1 mg/kg loading bolus – repeat dose (max 3 mg/kg)
 • Follow up with a drip
 • ET – 2-3 mg/kg
• **Etomidate**
 - **Classification** - sedative, hypnotic
 - **Indication**
 - Sedation for RSI (especially for head injuries)
 - Sedative for hypotension, trauma, cardiac disease
 - **Action**
 - Short acting sedative hypnotic agent
 - Non barbiturate or benzodiazepine
 - Decreases ICP, cerebral blood flow and cerebral metabolic rate
 - **Dose** - 0.2 – 0.4 mg/kg IV/IO infused over 20 – 30 seconds (max dose 20 mg)

• **Atropine**
 - **Classification** - anticholinergic
 - **Indication** – RSI
 - 1 – 5 years receiving succinylcholine
 - > 5 years receiving a second dose of succinylcholine
 - **Action**
 - Increases heart rate and cardiac output by blocking vagal stimulation
 - Causes mydriasis (paralysis)
 - **Dose**
 - IV/IO – 0.01 - 0.02 mg/kg (min dose -0.1 mg / max dose 0.5 mg)
 - IM - 0.2 mg/kg

• **Lidocaine**
 - **Classification** - antiarrhythmic
 - **Indication**- RSI to reduce ICP
 - **Action**
 - Reduces ICP by inhibiting sodium channels in neurons
 - Reduces metabolic activity
 - **Dose** – 1 – 2 mg/kg
• Narcotic overdose
 – Naloxone (Narcan)
 • Classification – opioid antagonist
 • Indication – reverse opiate overdose
 • Action – competes with opioids for receptor site
 • Dose – 4 mg (repeat until total reversal)

• Anaphylaxis
 – Epinephrine
 • Classification – catecholamine, vasopressor, inotrope
 • Indication - anaphylaxis
 • Action
 – Beta adrenergic stimulator (particularly beta 2)
 – Increases heart rate, contractility and automaticity
 • Dose
 – IM -0.01 mg/kg of 1/1000 every 15 min. (0.3 mg max)
 – IV/IO – 0.01 - 0.1 mg/kg of 1/10000 (max dose 1 mg)
 – Hypotension refractory to fluids – 0.1 – 1 mcg/kg/min

• Hypoglycemia
 – Dextrose (glucose)
 • Classification -carbohydrate
 • Indication - hypoglycemia
 • Action – increases blood glucose
 • Dose - 0.5 – 1 g/kg
 • Concentrations
 – D50W – 1- 2 ml/kg
 – D25W – 2-4 ml/kg – dilute D50 1:1 with N.S.
 – D12.5W – 5-10 ml/kg dilute D25 1:1 with N.S. (newborns)
<table>
<thead>
<tr>
<th>Equipment</th>
<th>GRAY* 3-5 kg</th>
<th>PINK Small Infant 6-7 kg</th>
<th>RED Infant 8-9 kg</th>
<th>PURPLE Toddler 10-11 kg</th>
<th>YELLOW Small Child 12-14 kg</th>
<th>WHITE Child 15-18 kg</th>
<th>BLUE Child 19-23 kg</th>
<th>ORANGE Large Child 24-29 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resuscitation bag</td>
<td>Infant/child</td>
<td>Infant/child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
</tr>
<tr>
<td>Oxygen mask (NRB)</td>
<td>Pediatric</td>
<td>Pediatric</td>
<td>Pediatric</td>
<td>Pediatric</td>
<td>Pediatric</td>
<td>Pediatric</td>
<td>Pediatric</td>
<td>Pediatric</td>
</tr>
<tr>
<td>Oral airway (mm)</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Laryngoscope blade (size)</td>
<td>1 Straight</td>
<td>1 Straight</td>
<td>1 Straight</td>
<td>2 Straight</td>
<td>2 Straight or curved</td>
<td>2 Straight or curved</td>
<td>2 Straight or curved</td>
<td>2 Straight or curved</td>
</tr>
<tr>
<td>ET tube (mm)†</td>
<td>3.5 Uncuffed</td>
<td>3.5 Uncuffed</td>
<td>4.0 Uncuffed</td>
<td>4.5 Uncuffed</td>
<td>5.0 Uncuffed</td>
<td>5.5 Uncuffed</td>
<td>6.0 Cuffed</td>
<td></td>
</tr>
<tr>
<td>ET tube insertion length (cm)</td>
<td>3 kg 9-9.5</td>
<td>4 kg 9.5-10</td>
<td>5 kg 10-10.5</td>
<td>10.5-11</td>
<td>11-12</td>
<td>14-15</td>
<td>16.5</td>
<td>17-18</td>
</tr>
<tr>
<td>Suction catheter (F)</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>BP cuff (Neonatal /5/Infant)</td>
<td>Infant/child</td>
<td>Infant/child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
<td>Child</td>
</tr>
<tr>
<td>IO (ga)</td>
<td>18/15</td>
<td>18/15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>NG tube (F)</td>
<td>5-8</td>
<td>5-8</td>
<td>8-10</td>
<td>10</td>
<td>10</td>
<td>12-14</td>
<td>14-18</td>
<td>14-18</td>
</tr>
<tr>
<td>Urinary catheter (F)</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8-10</td>
<td>10</td>
<td>10-12</td>
<td>10-12</td>
<td>12</td>
</tr>
<tr>
<td>Chest tube (F)</td>
<td>10-12</td>
<td>10-12</td>
<td>16-20</td>
<td>20-24</td>
<td>20-24</td>
<td>24-32</td>
<td>28-32</td>
<td></td>
</tr>
</tbody>
</table>
BRADYCARDIAS

• **General**
 – Starlings law
 • CO = STROKE VOLUME X HEART RATE
 – Primary bradycardia (cardiac causes)
 • Congenital abnormality in the pacemaker system
 • Surgical injury to the conduction system
 • Cardiomyopathy
 • Myocarditis
 – Secondary bradycardia (non cardiac causes)
 • Hypoxia
 • Acidosis
 • Hypotension
 • Hypothermia
 • Drug effects

• **Signs and symptoms**
 – Hypotension
 – Decreased level of consciousness
 – Shock
 – Poor organ perfusion
 – Respiratory distress or failure
 – Sudden collapse

• **Types of bradycardia**
 – Sinus bradycardia
 – First degree heart block
 – Mobitz 1 (Wenckebach)
 – Mobitz 2 (second degree type 2)
 – Third degree (complete heart block)
• First degree Heart Block

CAUSES
- May be normal
- AV node disease
- Enhanced vagal tone
- Myocarditis
- Hyperkalemia
- Hypoxemia
- MI
- Cardiac surgery
- Drugs
- Rheumatic fever

SYMPTOMS
- Asymptomatic

• Wenckebach Mobitz 1

CAUSES
- May be normal
- Drugs
- Vagal tone stimulation
- MI

SYMPTOMS
- Light headed
- Fainting
BRADYCARDIAS

• Second degree Mobitz 2

CAUSES
Abnormal conduction
Parasympathetic control
Drugs (rare)
MI
Cardiac surgery

SYMPTOMS
Irregular heart beat
Light headedness
Syncope

• Third degree (complete HB)

CAUSES
Conduction deficiencies
Myocarditis
Cardiac surgery
MI
Parasympathetic tone
Drug toxicity
Severe hypoxia
Severe acidosis

SYMPTOMS
Fatigue
Light headedness
Syncope
• Treating underlying causes
 – Hypoxia – high concentration oxygen / assist ventilations
 – Acidosis – ventilation respiratory / bicarbonate metabolic
 – Hyperkalemia – restore normal potassium levels
 – Hypothermia – warm
 – Heart blocks – atropine, pacing, inotropic drugs
 – Toxins, poisons and drugs
 • Cholinesterase inhibitors
 • Calcium channel blockers
 • Beta blockers
 • Alpha adrenergic agents

BRADYCARDIA ALGORITHM

CAB Ventilate, oxygenate, Intubate, IV/IO, vital signs
HR < 60 bpm poor perfusion, agonal breathing

NO

Observe CBA Pedes unit

Poor perfusion Hypotension Respiratory distress

Reversible causes Hypoxia Hypoglycemia Hypothermia

YES

HR <60 CPR

Epi 1/10000 0.01 mg/kg

Atropine - 0.02 mg/kg 0.5 mg child 1.0 mg adolescent

Pacemaker
• **General**
 – Tachycardias are fast rhythms originating in either the atria or ventricles
 – Sinus tachycardias usually do not create hemodynamic compromise but actually increase cardiac output (stress and fever)
 – Rapid tachyarrhythmias reduce cardiac output by not allowing ventricular filling during diastole.
 – Severe hemodynamic compromise can occur if these rhythms are allowed to continue

• **Types of tachycardias**
 – Sinus tachycardia
 – Supraventricular tachycardia (SVT) – stable / unstable
 – Wide complex tachycardia – stable / unstable

• **Signs of hemodynamic instability**
 – Poor feeding and irritability
 – Respiratory distress and failure
 – Signs of shock (poor perfusion and hypotension)
 – Altered mental status
 – Sudden collapse (weak rapid pulses)
• Common causes
 – Pain
 – Anxiety
 – Hypoxia
 – Hypovolemia
 – Shock
 – Fever
 – Metabolic stress
 – Injury (pneumothorax, tamponade, embolism)
 – Toxins
 – Anemia

• SINUS TACHYCARDIA ALGORITHM

 TREAT THE CAUSE
 TREAT THE ARRHYTHMIA

 CAB, OXYGEN, VITAL SIGNS, EKG, HX, LABS, 12 LEAD

 TREAT THE CAUSE
 ANXIETY, FEVER, HYPOXIA, HYPOVOLENIA
 EXERTION, PAIN, INJURY, TOXINS
• **General**
 – May be episodic (PSVT)
 – Tolerated better in infants
 – Prolonged SVT can lead to CHF resulting in severe hemodynamic compromise

• **Signs and symptoms**
 – Tachypnea
 – Wheezes, crackles, grunting associated with CHF
 – Delayed capillary refill time (cool extremities)
 – Diaphoresis hypotension
 – Altered mental status
 – Irritability
 – Lethargy

• **STABLE SVT ALGORITHM**

```
CAB OXYGEN EKG SPO2
VITAL SIGNS  IV  LABS

12 LEAD EKG

VAGAL MANEUVERS

ADENOSINE 6 – 12mg

PEDIATRIC CARDIOLOGIST
```
SUPRAVENTRICULAR TACHYCARDIA

- SUPRAVENTRICULAR ALGORITHM (UNSTABLE)

 CAB OXYGEN VITALS IV /IO
 SPO2 EKG PREPARE CODE EQ

 12 LEAD CONSULT

 VAGAL MANEUVERS

 ADENOSINE 0.1 mg/kg RAPID WITH FLUSH

 SYNC CARDIOVERSION 0.5-1.0 J/kg

 SYNC CARDIOVERSION UP TO 2 J/kg

 SYNC CARDIOVERSION UP TO 2 J/kg
• STABLE WIDE COMPLEX TACHYCARDIA ALGORITHM

CAB OXYGEN EKG SPO2
VITAL SIGNS IV/IO LABS
HISTORY 12 LEAD

AMIODARONE 5 mg/kg (20-60 min)
OR
Lidocaine 1.0 mg/kg

SYNC CARDIOVERSION
0.5 – 1 J/kg MAY INCREASE TO 2 J/kg

SUCCESSFUL

PEDIATRIC CARDIOLOGIST
• UNSTABLE WIDE COMPLEX TACHYCARDIA ALGORITHM

CAB OXYGEN EKG SPO2
VITALS IV/IO LABS
BRIEF HISTORY

IMMEDIATE SYNCHRONIZED
CARDIOVERSION 0.5-1 J/kg

SUCCESSFUL

PEDiatric CARDIOLOGIST

SECOND SYNCHRONIZED
CARDIOVERSION UP TO 2 J/kg

UNSUCCESSFUL

AMIODARONE 5mg/kg
OVER 20-60 MIN

PROCAINAMIDE 15 mg/kg
OVER 30-60 MIN

3rd SYNC CARDIOVERSION
UP TO 2 J/kg
• PATHWAYS

RESPIRATORY FAILURE

HYPOTENSIVE SHOCK

CARDIO / PULMONARY FAILURE

SUDDEN ARRHYTHMIA

HYPOXIC / ASPHICAL ARREST

SUDDEN CARDIAC ARREST

• CAUSES OF CARDIAC ARREST

5H

HYPOVOLEMIA
HYPOXIA
HYDROGEN ION
HYPOGLYCEMIA
HYPO – HYPER KALEMIA
HYPOTHERMIA

5T

TENSION PNEUMOTHORAX
TAMPONADE CARDIAC
TOXINS
THROMBUS PULMONARY
THROMBOSIS CORONARY
CAUSES OF CARDIAC ARREST

OUT OF HOSPITAL
- RESPIRATORY
 - UPPER AIRWAY
 - LOWER AIRWAY
 - DISORDERED CONTROL BREATHING
 - LUNG TISSUE DISEASE
- HYPOTENSION
 - HYPOVOLEMIC SHOCK
 - CARDIOGENIC SHOCK
 - DISTRIBUTIVE SHOCK
- SIDS ARRHYTHMIAS
 - TRAUMA DROWNING

IN HOSPITAL
- RESPIRATORY
 - UPPER AIRWAY
 - LOWER AIRWAY
 - DISORDERED CONTROL BREATHING
 - LUNG TISSUE DISEASE
- HYPOTENSION
 - HYPOVOLEMIC SHOCK
 - CARDIOGENIC SHOCK
 - TOXICOLOGIC SHOCK
 - DISTRIBUTIVE SHOCK
- HYPOTENSION
 - METABOLIC/ELECTROLYTE
 - HYPOVOLEMIC SHOCK
 - CARDIOGENIC SHOCK
 - TOXICOLOGIC SHOCK
 - DISTRIBUTIVE SHOCK
- ARRHYTHMIAS
CARDIAC ARREST RHYTHMS

- Non shockable rhythms
 - PEA Asystole Torsades

- Shockable rhythms
 - Pulseless Ventricular tachycardia
 - Ventricular tachycardia

- Ventricular tachycardia and Torsades
• Intravenous
 – Give the drug by bolus injection
 – Give while continuing CPR
 – Follow with a 5-10 ml bolus of normal saline
 – Raise the extremity

• Intraosseous
 – IO access can be established for all age groups
 – IO access can be achieved in 30 – 60 seconds
 – IO is preferred over the endotracheal route
 – Any drug given IV can also be given IO

• Endotracheal
 – Drug absorption is unpredictable
 – Optimal dose of most drugs is unknown
 – Recommended dose is higher
 – A limited number of drugs can be given
• Stimulant / vasopressors
 – Epinephrine – 0.1-0.2 mg/kg IV/IO 1/10000
 – Epinephrine – 0.1 mg/kg ET 1/1000
 – Vasopressin – use if no response to epinephrine

• Antiarrhythmics
 – Amiodarone – 5 mg/kg may repeat x2
 • Refractory VF or VTACH
 – Lidocaine – 1 mg/kg
 – Magnesium sulfate – 25- 50 mg/kg
 • Torsades or hypomagnesemia
CARDIAC ARREST ALGORITHM
PEA AND ASYSTOLE

CONTINUOUS CPR
2 MIN. CYCLES
PERIODIC PULSE CHECK

CPR MONITOR / DEFIB OXYGENATE

INTUBATE / CO2 IV / IO ACCESS

EPINEPHERINE 0.01 mg/kg 1/10000 REPEAT EVERY 3-5 MINUTES

IDENTIFY AND TREAT CAUSES
5 H’S AND T ‘S
PALS Handbook

CARDIAC ARREST ALGORITHM
PULSELESS VTACH AND VF

CPR MONITOR/DEFIB OXYGENATE
DEFIBRILLATE AT 2 J/Kg

INTUBATE / CO2 IV / IOI ACCESS

DEFIBRILLATE AT 4 J/Kg

EPINEPHRINE IV/IO 0.01 mg/kg (1/10000)
EVERY 3-5 MINUTES

DEFIBRILLATE AT 4 J/Kg

AMIODARONE 5mg/kg REPEAT TO 15mg/kg

DEFIBRILLATE AT 4 J/Kg

TREAT REVERSIBLE CAUSES
• **Shock**
• **Factors**
 – Intravascular volume
 – Blood pressure
 – Tissue oxygenation
 – Metabolic demand
 – Arrhythmias
 – Post myocardial dysfunction

POST RESUSCITATION MANAGEMENT

- **Optimize Ventilation and Oxygenation**
- **Persistent Shock**
 - Identify Causes
 - 20cc/kg Fluid Bolus
 - Inotropic Support

Hypotensive
- Epinephrine
- Dopamine
- Norepinephrine

Normotensive
- Dobutamine
- Epinephrine
- Milrinone
- Dopamine

- If patient remains unconscious:
 - Mild hypothermia

Monitor & Treat
- Hypoglycemia
- Electrolytes
- ABG’s
- Agitation
- Seizures
- Consult
- Transport
POST RESUSCITATION MANAGEMENT

• Respiratory
 – Factors
 • Oxygenation
 • Intubation
 • Ventilation
 • Analgesia and Sedation
 • Neuromuscular blockade

• Cardiovascular
 – Factors
 • Intravascular volume
 • Blood pressure
 • Tissue oxygenation
 • Metabolic demand
 • Arrhythmias
 • Post arrest myocardial dysfunction
• **Neurologic**
 – Factors
 • Brain perfusion
 • Blood pressure
 • Temperature control
 • Increased ICP
 • Seizures

• **Gastrointestinal**
 – Factors
 • Gastric distension
 – Naso or orogastric tube
 • Ileus
 • Hepatic failure

• **Hematologic system**
 – Factors
 • Blood component therapy
 • Coagulopathy
 • Platelets
 • RBC and WBC
• History and assessment

HISTORY
MULTIPLE BIRTHS
PREMATURE
MERCONIUM
NARCOTIC USE

ASSESSMENT
GESTATION
AMNIOTIC FLUID
BREATHING
CRYING
MUSCLE TONE

• Typical newborn vital signs
 – Heart rate – 100 – 180
 – Respiratory rate 30 – 60 bpm
 – Systolic blood pressure – 55 – 90 mmHg
 – Diastolic blood pressure – 25 – 55 mmHg

<table>
<thead>
<tr>
<th>Sign</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>Absent</td>
<td>< 100</td>
<td>> 100</td>
</tr>
<tr>
<td>Muscle tone</td>
<td>Limp</td>
<td>Some flexion</td>
<td>Active motion</td>
</tr>
<tr>
<td>Respiratory effort</td>
<td>Absent</td>
<td>Slow/irregular</td>
<td>Good exchange</td>
</tr>
<tr>
<td>Response to stimulation</td>
<td>No response</td>
<td>Grimace</td>
<td>Cough, sneeze or cry</td>
</tr>
<tr>
<td>Color</td>
<td>Blue/pale</td>
<td>Peripheral cyanosis</td>
<td>Pink</td>
</tr>
</tbody>
</table>
- **Meconium**
 - Suction mouth and nose if obstructed
 - Intubate
 - Suction using a meconium aspirator
 - Repeat with new tubes until clear